

YugabyteDB:

PostgreSQL-compatible database

On OKE

Franck Pachot, Developer Advocate

Franck Pachot

Developer Advocate on YugabyteDB

(PostgreSQL-compatible distributed database)

20 years in databases, dev and ops Oracle ACE Director, AWS Data Hero Oracle Certified Master, AWS Database Specialty


• • •

fpachot@yugabyte.com dev.to/FranckPachot @FranckPachot

Databases in Oracle Cloud

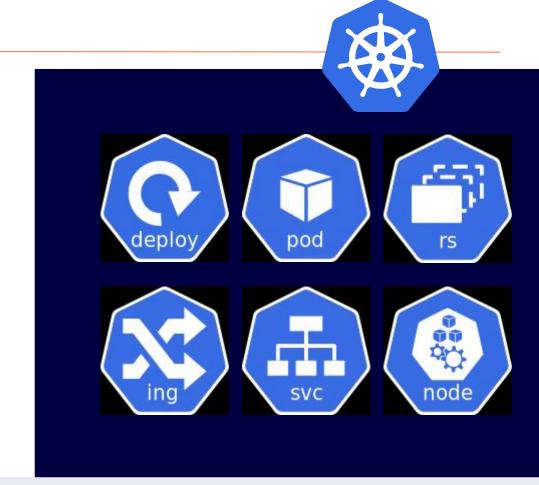
What about applications build for PostgreSQL?

What about HA with shared nothing?

What about cloud-native scale-out SQL databases?

Why Kubernetes?

High Availability


Scalability

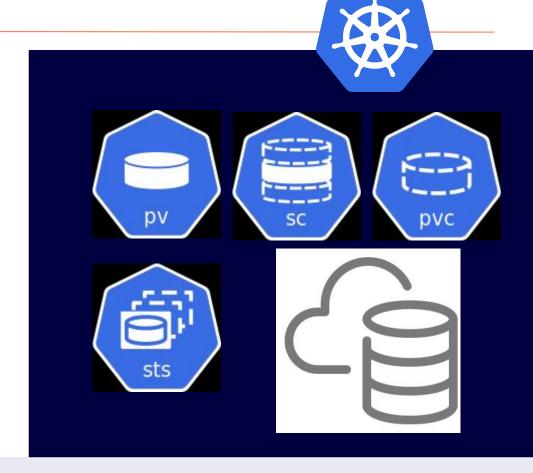
Disaster Recovery

+ declarative

And Databases?

K8s StatefulSets

Alpha Beta Stable


Persistent

Shared

Replicated

Distributed SQL Database

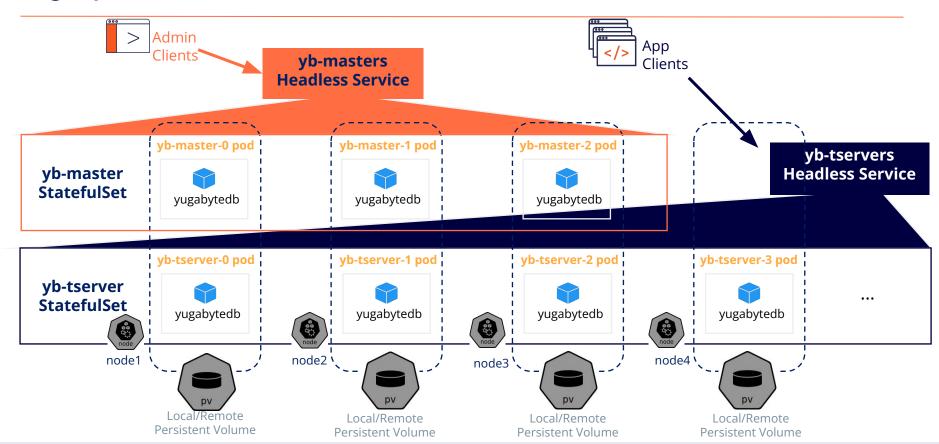
yugabyte **DB**

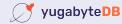
A cluster is called 'universe'

Private or public (internet) network On-premises, cloud, hybrid, open-source

PostgreSQL API

PG compatible with read/write on all nodes

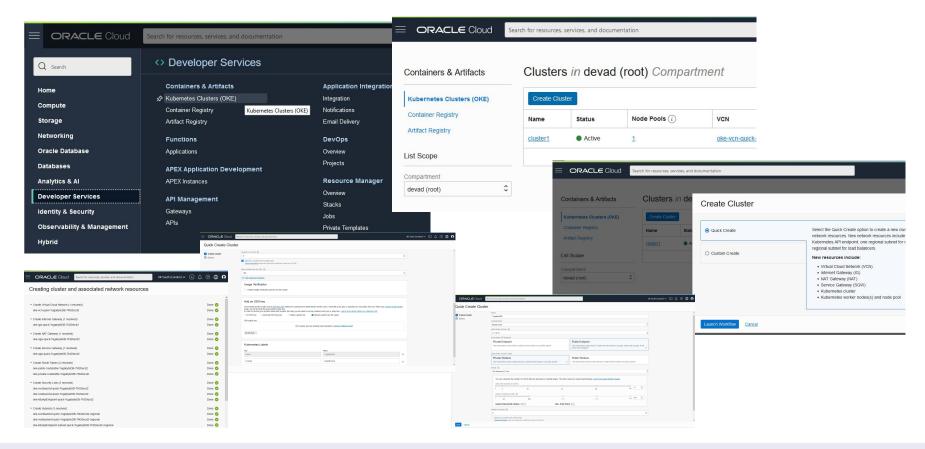



No shared storage, only network

Write on all nodes (Raft protocol)

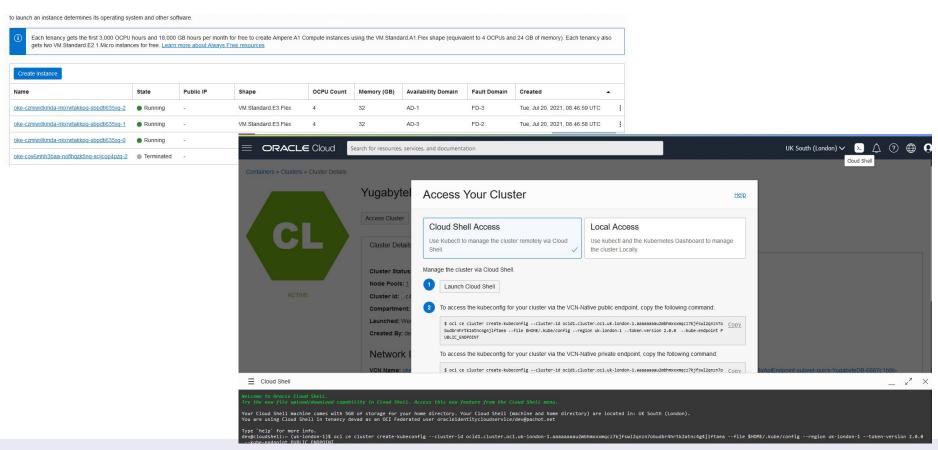
YugabyteDB on Kubernetes

Demo


Oracle Cloud

OKE

YugabyteDB

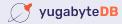



Kubernetes on Oracle Cloud


Kubernetes on Oracle Cloud

Helm charts

```
helm repo add yugabytedb \
 https://charts.yugabyte.com
helm repo update
kubectl create namespace yb-demo
helm install yb-demo
                                       allows 1 node failure
 yugabytedb/yugabyte
 --namespace yb-demo
 --set replicas.{master, tserver}=3
```



StatefulSets

```
kind: StatefulSet
metadata:
                                                  ordered or parallel
  name: yb-tserver
                                                  for faster scale-up
  namespace: yb-demo
spec:
  replicas: 3
                                                no downtime upgrade
  serviceName: yb-tservers
  podManagementPolicy: parallel
  updateStrategy:
   type: RollingUpdate
  containers:
   - name: yb-tserver
     image: 'yuqabytedb/yuqabyte:2.7.2.0-b216'
     command:
       - exec /home/yuqabyte/bin/yb-tserver
         --replication factor=3 --enable ysql=true
```

Services

```
kind: Service
metadata:
  name: yb-tserver-service
  namespace: yb-demo
spec:
  ports:
  - name: tcp-ysql-port
   protocol: TCP
   port: 5433
   targetPort: 5433
   nodePort: 31874
  - name: tcp-yql-port
   port: 9042
  selector:
   app: yb-tserver
  clusterIP: 10.244.147.170
  type: LoadBalancer
```


Storage:

Ephemeral storage:

if a container dies, data must be read from the other nodes:

- quorum must still be there or data is lost (RPO>0)
- Full availability is up when all data has been transferred (RTO>0)

Shared storage

A shared remote storage (NFS) is **not** necessary in a distributed DB

Block Storage Block Volumes in lab Compartment Block Volumes provise high-performance network storage is support a broad range of I/O intensive workloads, Learn more Block Volume Bablage Block Volume Repticas Convert Block Volume Repticas Block Volume Repticas Block Volume Repticas Convert Block Volume

Local or Persistent Volume

Can be pre-provisioned in the worker node or outside (cloud block storage)

Persistent Volumes:

- provisioned dynamically by K8s from block storage
- ✓ resilient to node failures (without reconstruction)

Anti-affinity:

One pod per node (privileges durability over HA)

```
preferred or required
spec:
 affinity:
  preferredDuringSchedulingIgnoredDuringExecution:
  - weight: 100
   podAffinityTerm:
    labelSelector:
     matchExpressions:
     - key: app
      operator: In
      values:
       - yb-tserver
    topologyKey: kubernetes.io/hostname
```

Headless service

- new nodes discovered and added to DNS
- ✓ direct connection (placement aware smart clients)

```
apiVersion: v1
kind: Service
metadata:
   name: yb-tservers
   labels:
    app: yb-tserver
spec:
   clusterIP: None
```

External IP

Tablet Servers

Server	Time since heartbeat	Status & Uptime	User Tablet- Peers / Leaders	RAM Used	Num Files
yb-tserver-0.yb-tservers.yb-	1.0s	ALIVE:	0/0	33.55	0
demo.svc.cluster.local:9000 0cd6c4cad6f54a89bd9e853f00daff1b		0:06:33		MB	

cloudshell\$ kubectl get services -n yb-demo

NAME

TYPE

CLUSTER-IP

EXTERNAL-IP

PORT(S)

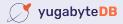
yb-master-ui

LoadBalancer 10.96.81.113 150.230.125.157

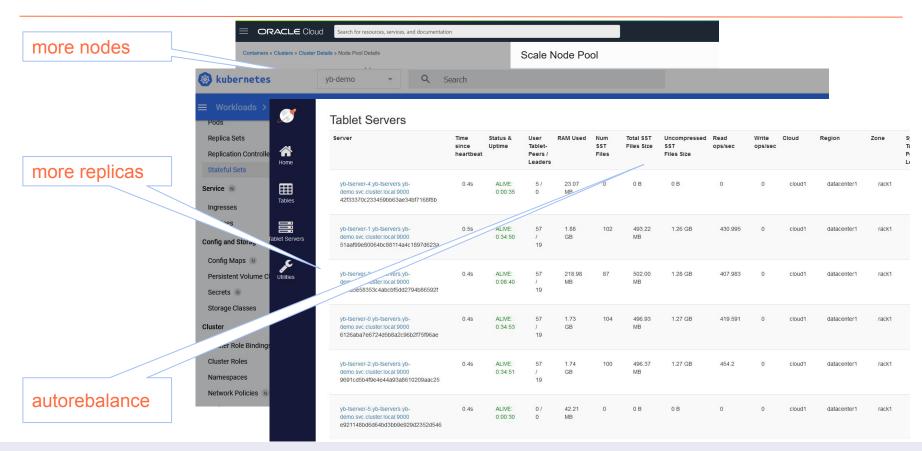
7000:30510/TCP

yb-masters 7000/TCP,7100/TCP ClusterIP

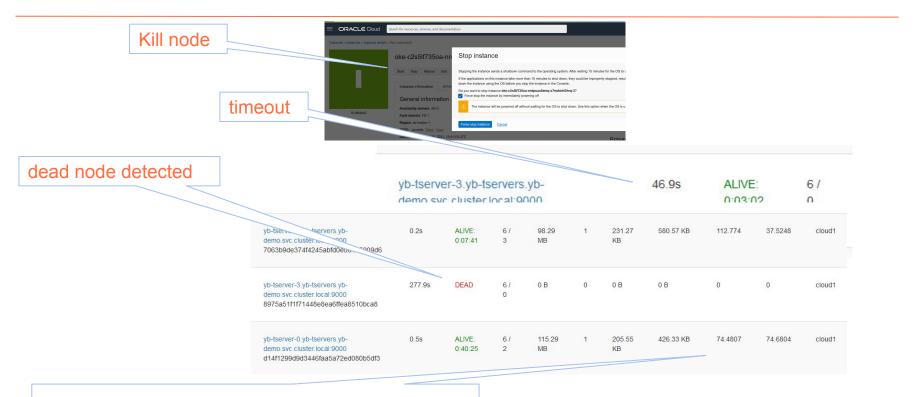
None

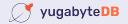

<none>

yb-tserver-service LoadBalancer 10.96.94.76


132,226,208,207

5433:31094/TCP,6379:31326/TCP,9042:32136/TCP


vb-tservers ClusterIP None <none> 5433/TCP, 9000/TCP, 12000/TCP, 11000/TCP, 13000/TCP, 9100/TCP, 6379/TCP, 9042/TCP


Demo: scale-out

Demo: node failure

Other nodes still working (new leaders elected)

Automating Day 2 Operations

K8s: Pod failure is automatic

ops: Node failure: manually add new workers

ops: Local storage failure: manually add new volume

YB: Automatic re-sharding

K8s: onDelete or rollingUpdate

(pod spawned with same network id / storage)

YB: can run with nodes in newer version

YB: distributed snapshots and backup **ops**: restore to existing or new cluster

Distributed vs. Streaming Replication

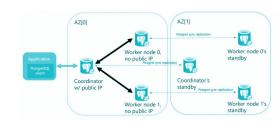
Streaming replication and sharding:

The primary is still a SPOF:

Failover may take time (RTO)

Failover may miss transactions (RPO)

Manual or complex automation (rolling upgrade require many failovers)


PostgreSQL on K8s at Zalando: Two years in production https://av.tib.eu/media/52142

Distributed with replication factor

All nodes are equal

Leaders are balanced over all nodes

Followers are ready to be elected in few seconds (Raft protocol)

Thank You

Join us on Slack:
www.yugabyte.com/slack
Star us on GitHub:
github.com/yugabyte-db

fpachot@yugabyte.com dev.to/FranckPachot

@FranckPachot

Core message:

- A PostgreSQL database active on multiple nodes
- Operations fully automated (cloud, K8s, PaaS)
- Distributed to provide:
 Resilience, High Availability,
 Geo Distribution, Elasticity

