The basics of Machine Learning

Heli Helskyaho @HeliFromFinland

Introduction, Heli

- * Graduated from University of Helsinki (Master of Science, computer science), currently a doctoral student, researcher and lecturer (databases, Big Data, Multi-model Databases, methods and tools for utilizing semi-structured data for decision making) at University of Helsinki
- * Worked with Oracle products since 1993, worked for IT since 1990
- * Data and Database!
- * CEO for Miracle Finland Oy
- * Oracle ACE Director, Oracle Groundbreaker Ambassador
- * Ambassador for EOUC (EMEA Oracle Users Group Community)
- * Listed as one of the TOP 100 influencers on IT sector in Finland (2015, 2016, 2017, 2018)
- Public speaker and an author
- * Author of the book Oracle SQL Developer Data Modeler for Database Design Mastery (Oracle Press, 2015), co-author for Real World SQL and PL/SQL: Advice from the Experts (Oracle Press, 2016)

Oracle SQL Developer Data Modeler for Database Design Mastery

Design, Deploy, and Maintain World-Class Databases on Any Platform

Heli Helskyaho Grade ACE Director Forewords by C.J. Date and Tom Kyte

RACLE

Real World SQL & PL/SQL

Advice from the Experts

Arup Nanda Brendan Tierney Heli Helskyaho Martin Widlake Alex Nuijten

ORACLE'

Copyright © Miracle Finland Oy

500+ Technical Experts Helping Peers Globally ORACLE[®] ACE Program

3 Membership Tiers

- Oracle ACE Director
- Oracle ACE
- Oracle ACE Associate

bit.ly/OracleACEProgram

Nominate yourself or someone you know: acenomination.oracle.com

What is Machine Learning?

- * An important part of Artificial Intelligence (AI)
- * Machine learning (ML) teaches computers to learn from experience (algorithms)
 - * Learn from data and make predictions
 - * Mathematics, statistics,...
- * "field of study that gives computers the ability to learn without being explicitly programmed"
- -- Arthur Samuel, 1959
- * A systematic study of algorithms and systems that improve their knowledge or performance with experience

Copyright © Miracle Finland Oy

Why ML? Why now?

- * Improved technology
- * The price for storage solutions
- * ...
- * An environment that NEEDS ML and is finally able to really use it
- Artificial Intelligence (AI)
- * BIG DATA

What is Big Data?

- * There is no size that makes a data to be "Big Data", it always depends on the capabilities
- * The data is "**Big**" when traditional processing with traditional tools is not possible due to the amount or the complexity of the data

The three V's

- * Volume, the size/scale of the data
- * Velocity, the speed of change, analysis of streaming data
- Variety, different formats of data sources, different forms of data; structured, semi-structured, unstructured

The other V's

- Veracity, the uncertainty of the data, the data is worthless or harmful if it's not accurate
- Viability, validate that hypothesis before taking further action (and, in the process of determining the viability of a variable, we can expand our view to determine other variables)
- * Value, the potential value
- Variability, refers to data whose meaning is constantly changing, in consistency of data; for example words and context
- Visualization, a way of presenting the data in a manner that's readable and accessible

Challenges in Big Data

- * More and more data (volume)
- * Different data models and formats (variety)
- * Loading in progress while data exploration going on (velocity)
- * Not all data is reliable (veracity)
- * We do not know what we are looking for (value, viability, variability)
- * Must support also non-technical users (journalists, investors, politicians,...) (visualization)
- * All must be done efficiently and fast and as much as possibly by machines

When to use ML?

* You have **data**!

- * ML cannot be performed without data
- part of the data for finding the model, part to prove it (not all for finding the model!)
- * Rules and equations are
 - Complex (image recognition)
 - Constantly changing (fraud detection)
- * The nature of the data changes and the program must adapt (today's spam is tomorrow's ham) (predicting shopping trends)

Real life use cases for ML

- * Spam filters
- * Log filters (and alarms)
- * Data analytics
- * Image recognition
- * Speech recognition
- * Medical diagnosis
- * Robotics
- *

Approximation! A sophisticated guess!

- * ML always gives an approximated answer
- * Some are better than others, some are useful
- * search for patterns and trends
- Prediction accuracy: the higher the number the better it will work on new data
- * several models, choose the best, but still: all approximations! There is no correct answer...

What do I find the most difficult for a beginner?

- * The terminology!
 - * So many different terms
 - The same term meaning different things, two (or more) terms for the same thing (sometimes a completely different word, sometimes just a short of the original word)
 - * The relationships the terms have

Terms used 1/3

* A Task

- * The problem to be solved with ML
- * An Algorithm
 - * the "experience" for the computer to learn with, solves the learning problem
 - * Produces the Models

Terms used 2/3

- * A Model
 - * The output of ML
 - * The Task is Addressed by Models

Terms used 3/3

* Features/Dimensions

- * an individual *measurable property* or *characteristic of a phenomenon* being observed (Bishop, Christopher (2006), Pattern recognition and machine learning)
- * Deriving features (feature engineering, feature extraction) is one of the most important parts of machine learning. It turns data into information that a machine learning algorithm can use.
- * Methods/Techniques
 - * Unsupervised learning
 - * Supervised learning

The Task

- * It is very important to define the Task well
- * Machine learning is not only a computational subject, the practical side is very important

It's all about Algorithms

- * Humans learn with *experience*, machines learn with *algorithms*
- * It is not easy to find the right Algorithm for the Task
 - * usually try with several algorithms to find the best one
 - * selecting an algorithm is a process of trial and error

Which algorithm?

- * The selection of an algorithm depends on for instance
 - * the size and type of data
 - * the insights you want to get from the data
 - * how those insights will be used
- * It's a trade-off between many things
 - * Predictive accuracy on new data
 - * Speed of training
 - * Memory usage
 - * Transparency (black box vs "clear-box", how decisions are made)
 - * Interpretability (the ability of a human to understand the model)
 - *

Models 1/2

Geometric models

- * Support vector machines, SVM
- * Notion of distance: Euclidean distance, nearest-neighbour classifier, Manhattan distance
- * Probabilistic models
 - * Bayesian classifier
- * Logical models
 - * Decision trees

Models 2/2

* Grouping models, number of groups determined at the training time

- * Tree based models
- * Grading models, "infinite" resolution
 - * Geometric classifiers

*

- * A Model is only as good as its Features...
- * Interaction between features
- * The unnecessary detail can be removed by discretisation (11,1kg vs 10kg)

ML in short

- * Use the right *Features*
 - * with right Algorithms
 - * to build the right *Models*
 - * that achieve the right Tasks

Two types of Methods

- * Unsupervised learning
 - * finds hidden patterns or intrinsic structures in input data
- * Supervised learning
 - * trains a model on known input and output data to predict future outputs

Unsupervised Learning

- Learning from unlabeled input data by finding hidden patterns or intrinsic structures in that data
- Machine learning algorithms find natural patterns in data to make better decisions and predictions possible
- * used typically when you
 - * don't have a specific goal
 - * The target variable is unknown
 - are not sure what information the data contains
 - want to reduce the features of your data as a preprocessing for supervised learning, dimentionality reduction

Data for Unsupervised Learning

D

E

F

G

H

I

C

B

46529 2007,1,16,2,1712,1715,1810,1815,WN,990,N252,58,60,45,-5,-3,SJC,BUR,296,3,10,0,,0,0,0,0,0,0 46530 2007,1,16,2,1228,1230,1327,1330,WN,1191,N374SW,59,60,46,-3,-2,SJC,BUR,296,2,11,0,,0,0,0,0,0,0 46531 2007,1,16,2,907,905,1003,1005,WN,1445,N409,56,60,46,-2,2,SJC,BUR,296,1,9,0,,0,0,0,0,0,0 46532 2007,1,16,2,1944,1940,2040,2040,WN,1449,N311,56,60,46,0,4,SJC,BUR,296,3,7,0,,0,0,0,0,0,0 46533 2007,1,16,2,650,650,749,750,WN,1650,N364,59,60,46,-1,0,SJC,BUR,296,2,11,0,,0,0,0,0,0,0 46534 2007,1,16,2,2052,2050,2151,2150,WN,2206,N356,59,60,49,1,2,SJC,BUR,296,2,8,0,,0,0,0,0,0,0 46535 2007,1,16,2,2053,2055,2204,2215,WN,889,N234,71,80,59,-11,-2,SJC,LAS,386,4,8,0,,0,0,0,0,0,0 46536 2007,1,16,2,926,925,1047,1045,WN,1088,N340,81,80,67,2,1,SJC,LAS,386,4,10,0,,0,0,0,0,0,0 46537 2007,1,16,2,1748,1750,1902,1910,WN,1113,N423,74,80,63,-8,-2,SJC,LAS,386,2,9,0,,0,0,0,0,0,0 46538 2007,1,16,2,2127,2130,2241,2250,WN,1232,N326,74,80,62,-9,-3,SJC,LAS,386,3,9,0,,0,0,0,0,0,0 46539 2007,1,16,2,700,700,816,820,WN,1325,N725,76,80,61,-4,0,SJC,LAS,386,3,12,0,,0,0,0,0,0,0 46540 2007,1,16,2,1344,1345,1502,1505,WN,2331,N241,78,80,65,-3,-1,SJC,LAS,386,3,10,0,,0,0,0,0,0,0 46541 2007,1,16,2,1552,1555,1709,1715,WN,2583,N236,77,80,64,-6,-3,SJC,LAS,386,4,9,0,,0,0,0,0,0,0 46542 2007,1,16,2,647,635,753,745,WN,123,N659SW,66,70,51,8,12,SJC,LAX,308,7,8,0,,0,0,0,0,0,0 46543 2007,1,16,2,1833,1835,1936,1945,WN,196,N365,63,70,49,-9,-2,SJC,LAX,308,4,10,0,,0,0,0,0,0,0 46544 2007,1,16,2,1420,1325,1531,1435,WN,197,N306SW,71,70,52,56,55,SJC,LAX,308,4,15,0,,0,0,0,1,0,55 46545 2007,1,16,2,1652,1650,1800,1800,WN,756,N631SW,68,70,53,0,2,SJC,LAX,308,7,8,0,,0,0,0,0,0,0 46546 2007,1,16,2,755,755,902,905,WN,1247,N642WN,67,70,52,-3,0,SJC,LAX,308,5,10,0,,0,0,0,0,0,0 46547 2007,1,16,2,1619,1620,1727,1730,WN,1577,N628SW,68,70,52,-3,-1,SJC,LAX,308,5,11,0,,0,0,0,0,0,0 46548 2007,1,16,2,1527,1525,1635,1635,WN,1581,N365,68,70,50,0,2,SJC,LAX,308,5,13,0,,0,0,0,0,0,0 46549 2007,1,16,2,2116,2120,2228,2230,WN,1635,N317SW,72,70,51,-2,-4,SJC,LAX,308,5,16,0,,0,0,0,0,0,0 46550 2007,1,16,2,1429,1430,1535,1540,WN,1664,N619SW,66,70,49,-5,-1,SJC,LAX,308,5,12,0,,0,0,0,0,0,0 46551 2007,1,16,2,1255,1255,1359,1405,WN,1843,N225,64,70,51,-6,0,SJC,LAX,308,3,10,0,,0,0,0,0,0,0 46552 2007,1,16,2,909,910,1040,1025,WN,2087,N684,91,75,50,15,-1,SJC,LAX,308,12,29,0,,0,0,15,0,0 46553 2007,1,16,2,1008,955,1116,1105,WN,2164,N601WN,68,70,51,11,13,SJC,LAX,308,6,11,0,,0,0,0,0,0,0 46554 2007,1,16,2,1101,1105,1211,1215,WN,2607,N625SW,70,70,55,-4,-4,SJC,LAX,308,5,10,0,,0,0,0,0,0,0

A

Copyright © Miracle Finland Oy

Clustering

- * Clustering is the most common method for unsupervised learning and used for exploratory data analysis to find hidden patterns or groupings in data.
- * Clustering algorithms
 - * Hard clustering
 - * each data point belongs to only one cluster
 - * Soft clustering
 - * each data point can belong to more than one cluster

Hard clustering algorithms

* each data point belongs to only one cluster

Copyright © Miracle Finland Oy

Some Hard Clustering Algorithms

* K-Means (Lloyd's algorithm)

- * Partitions data into k number of mutually exclusive clusters (centroids)
- * Assign each observation to the closest cluster
- * Move the centroids to the true mean of its observations
- * When to use:
 - * When the number of clusters is known
 - * Fast clustering of large data sets

* K-Medoids

- * Similar to k-means, but with the requirement that the cluster centers coincide with points in the data (chooses datapoints as centers, medoids).
- * Can be more robust to noise and outliers than K-Means
- * When to use:
 - * When the number of clusters is known
 - * Fast clustering of categorical data

Soft clustering algorithms

* each data point can belong to more than one cluster

Copyright © Miracle Finland Oy

Some Soft clustering algorithms

* Fuzzy C-Means (FCM)

- * Similar to k-means, but data points may belong to more than one cluster.
- * When to use:
 - * The number of clusters is known
 - * When clusters overlap
 - * Typically for pattern recognition

* Gaussian Mixture Model

- * Partition-based clustering where data points come from different multivariate normal distributions with certain probabilities. (example: Prices for a house in different area)
- * When to use:
 - * Data point might belong to more than one cluster
 - * Clusters have different sizes and correlation structures within them

Copyright © Miracle Finland Oy

Supervised Learning

- * Learning from known, labelled data
- * Training a model on known input and output data to predict future outputs (remember that uncertainty is always involved)

Data for Supervised Learning

1 Year, Month, Dayof Month, DayOf Week, Dep Time, CRSDep Time, Arr Time, CRSArr Time, Unique Carrier, Flight Num, Tail	Num, Actual Elapsed Time, CRSE lapsed Time, Air Time, Arr Delay, Dep Delay, Origin, Dest, Distance, Taxi In, TaxiOut, Cancelled, Cancellation Code, Diverted, C
2 2007,1,1,1,1232,1225,1341,1340,WN,2891,N351,69,75,54,1,7,SMF,ONT,389,4,11,0,,0,0,0,0,0,0	
3 2007,1,1,1,1918,1905,2043,2035,WN,462,N370,85,90,74,8,13,SMF,PDX,479,5,6,0,,0,0,0,0,0,0,0	
4 2007,1,1,1,2206,2130,2334,2300,WN,1229,N685,88,90,73,34,36,SMF,PDX,479,6,9,0,,0,3,0,0,0,31	
5 2007,1,1,1,1230,1200,1356,1330,WN,1355,N364,86,90,75,26,30,SMF,PDX,479,3,8,0,,0,23,0,0,0,3	
6 2007,1,1,1,831,830,957,1000,WN,2278,N480,86,90,74,-3,1,SMF,PDX,479,3,9,0,,0,0,0,0,0,0	
7 2007,1,1,1,1430,1420,1553,1550,WN,2386,N611SW,83,90,74,3,10,SMF,PDX,479,2,7,0,,0,0,0,0,0,0	
8 2007,1,1,1,1936,1840,2217,2130,WN,409,N482,101,110,89,47,56,SMF,PHX,647,5,7,0,,0,46,0,0,0,1	
9 2007,1,1,1,944,935,1223,1225,WN,1131,N749SW,99,110,86,-2,9,SMF,PHX,647,4,9,0,,0,0,0,0,0,0	
10 2007,1,1,1,1537,1450,1819,1735,WN,1212,N451,102,105,90,44,47,SMF,PHX,647,5,7,0,,0,20,0,0,0,24	
11 2007,1,1,1,1318,1315,1603,1610,WN,2456,N630WN,105,115,92,-7,3,SMF,PHX,647,5,8,0,,0,0,0,0,0,0	
12 2007,1,1,1,836,835,1119,1130,WN,2575,N493,103,115,88,-11,1,SMF,PHX,647,7,8,0,,0,0,0,0,0,0	
13 2007,1,1,1,2047,1955,2332,2240,WN,2608,N733SW,105,105,89,52,52,SMF,PHX,647,7,9,0,,0,49,0,0,0,3	
14 2007,1,1,1,2128,2035,2245,2200,WN,139,N348,77,85,66,45,53,SMF,SAN,480,3,8,0,,0,0,0,3,0,42	
15 2007,1,1,1,935,940,1048,1105,WN,747,N358,73,85,63,-17,-5,SMF,SAN,480,2,8,0,,0,0,0,0,0,0	
16 2007,1,1,1,1251,1245,1405,1410,WN,933,N413,74,85,65,-5,6,SMF,SAN,480,2,7,0,,0,0,0,0,0,0	
17 2007,1,1,1,1729,1645,1843,1810,WN,1054,N416,74,85,64,33,44,SMF,SAN,480,3,7,0,,0,3,0,0,0,30	
18 2007,1,1,1,825,825,941,950,WN,1106,N383SW,76,85,63,-9,0,SMF,SAN,480,3,10,0,,0,0,0,0,0,0	
19 2007,1,1,1,1042,1040,1158,1205,WN,1554,N316SW,76,85,66,-7,2,SMF,SAN,480,2,8,0,,0,0,0,0,0,0	
20 2007,1,1,1,1726,1725,1839,1850,WN,1604,N691WN,73,85,63,-11,1,SMF,SAN,480,3,7,0,,0,0,0,0,0,0	
21 2007,1,1,1,1849,1820,2016,1940,WN,1975,N308SW,87,80,69,36,29,SMF,SAN,480,3,15,0,,0,20,0,7,0,9	
22 2007,1,1,1,2219,2105,2332,2225,WN,2083,N205,73,80,62,67,74,SMF,SAN,480,3,8,0,,0,0,0,0,0,67	
23 2007,1,1,1,2012,1940,2131,2105,WN,2577,N603SW,79,85,66,26,32,SMF,SAN,480,3,10,0,,0,9,0,0,0,17	

A process of supervised learning 1/2

1. Train

- 1. Load data
- 2. Pre-process data
- 3. Learn using a method and an algorithm
- 4. Create a model
- * iterate until you find the best model

A process of supervised learning 2/2

2. Predict (use the model with new data)

- 1. New data
- 2. Pre-process data
- 3. Use the model
- **4.** Get predictions
- 5. If it works well enough, integrate the model into your application

Supervised Learning, methods/techniques

- * Predictive models
 - Classification
 - * Regression

Supervised Learning, Classification

- * Classification models are trained to *classify* data into *categories*.
- * They predict discrete responses
 - * an email is genuine or spam
 - * a tumor is small, medium size, or large
 - * a tumor is cancerous or benign
 - * a person is creditworthy or not
- * For example applications like medical imaging or credit scoring

- * k Nearest Neighbor (kNN)
 - kNN categorizes objects based on the classes of their nearest neighbors all ready categorized
 - * kNN predictions assume that objects near each other are similar
 - * When to use:
 - * need a simple algorithm to establish benchmark learning rules
 - memory usage of the trained model is a lesser concern (can be very memory consuming)
 - prediction speed of the trained model is a lesser concern (can be slow if the amount of data is large or several dimensions are used)

Copyright © Miracle Finland Oy

* Naïve Bayes

- * assumes that the presence (or absence) of a particular feature of a class is unrelated to the presence (or absence) of any other feature when the class is defined
- classifies new data based on the highest probability of its belonging to a particular class (a fruit is red -> an apple, a fruit is round -> an apple, together a stronger probability to be an apple)
- * When to use:
 - * For a dataset containing many parameters (dimensionality of the inputs is high)
 - * Simple to implement, easy to interpret

Copyright © Miracle Finland Oy

* Neural Network

- * Imitates how biological nervous systems, the brain, process information
- * A large number of highly interconnected processing elements (neurones) work together to solve specific problems
- * When to use:
 - * For modeling highly nonlinear systems
 - * When data is available incrementally and you wish to constantly update the model
 - * Unexpected changes in your input data may occur
 - * Model interpretability is not a key concern

* Decision Trees, Bagged and Boosted Decision Trees

- * A tree consists of branching conditions, predict responses to data by following the decisions in the tree from the root down to a leaf node
- A bagged decision tree consists of several trees that are trained independently on data. Boosting involves reweighting of misclassified events and building a new tree with reweighted events.
- * When to use:
 - * Need an algorithm that is easy to interpret and fast to fit
 - * To minimize memory usage
 - * High predictive accuracy is not a requirement
 - * The time taken to train a model is less of a concern

Copyright © Miracle Finland Oy

Supervised Learning, Regression

- * To predict continuous responses
 - * changes in temperature
 - * fluctuations in electricity demand
- * For example applications like forecasting stock prices, house price forecasting, and electricity load forecasting.

* Linear Regression

- used to describe a continuous response variable as a linear function of one or more predictor variables
- * When to use:
 - need an algorithm that is easy to interpret and fast to fit, often the first model to be fitted to a new dataset
 - * As a baseline for evaluating other, more complex, regression models

* Nonlinear Regression

- * describe nonlinear relationships in experimental data
- * When to use:
 - When data has nonlinear trends and cannot be easily transformed into a linear space
 - * For fitting custom models to data

Generalized Linear Model (GLM)

- * A special case of nonlinear models that uses linear methods: it fits a linear combination of the inputs to a nonlinear function (the link function) of the outputs
- * When to use:
 - * When the response variables have non-normal distributions

* Gaussian Process Regression Model (GPR)

- nonparametric models that are used for predicting the value of a continuous response variable
- * When to use:
 - * For interpolating spatial data
 - * As a surrogate model to facilitate optimization of complex designs such as automotive engines
 - * Can be used for example forecasting of mortality rates

* Regression Tree

- * Decision trees for regression are similar to decision trees for classification, but they are modified to be able to predict continuous responses
- * When to use:
 - * When predictors are categorical (discrete) or behave nonlinearly

Improving Models

- * Why to improve
 - * To increase the accuracy and predictive power of the model
 - * To increase the ability to recognize data from noise
 - * To increase the performance
 - * To improve the Measures wanted
 - * ...

Improving Models

* Model improvement involves

- * Feature engineering
 - * Feature selection
 - * Feature transformation/extraction
- * Hyperparameter tuning

Feature selection

- Also called variable selection or attribute selection
 - Identifying the most relevant features that provide the best predictive model for the data
 - * Adding variables to the model to improve the accuracy or removing variables that do not improve model performance

Feature selection techniques

* Stepwise regression:

- adding or removing features sequentially until there is no improvement in prediction accuracy
- * Sequential feature selection:
 - adding or removing predictor variables iteratively and evaluating the effect of each change on the performance of the model

* Regularization:

- Using shrinkage estimators to remove redundant features by reducing their weights (coefficients) to zero
- * Neighborhood component analysis (NCA):
 - Finding the weight each feature has in predicting the output, so that features with lower weights can be discarded

Feature transformation

- * Feature transformation is a form of dimensionality reduction
- * Used when
 - want to reduce the dimensions/features of your data as a preprocessing for supervised learning
 - * As datasets get bigger, you frequently need to reduce the number of features, or dimensionality.

Feature transformation

* Techniques:

- * Principal component analysis (PCA)
- * Factor analysis
- * Non-negative matrix factorization

Principal component analysis (PCA)

- Converts a set of observations of possibly correlated variables into a smaller set of values of linearly uncorrelated variables called principal components
- * The first principal component will capture the most variance, followed by the second principal component, and so on.

Factor analysis

 identifies underlying correlations between variables in a dataset to provide a representation in terms of a smaller number of unobserved variables, factors

- * Also called non-negative matrix approximation
- * used when model elements must represent *non-negative* quantities, such as physical quantities

Hyperparameter tuning

- * Also called as Hyperparameter optimization
- * Choosing an optimal set of hyperparameters for a learning algorithm
 - Hyperparameters are parameters whose values are set prior to the commencement of the learning process (the value of other parameters is derived via training)
 - * Number of clusters in a clustering, number of leaves or depth of a tree,...
 - Hyperparameters control how a machine learning algorithm fits the model to the data.

Hyperparameter Tuning

- * Tuning is an iterative process
 - * Set parameters based on a best guess
 - * Aim to find the best possible values to yield the best model
 - * As you adjust hyperparameters and the performance of the model begins to improve, you see which settings are effective and which still require tuning
- * Some examples of optimization algorithms:
 - * Grid search
 - * Bayesian optimization
 - * Gradient-based optimization
 - * Random Search
- * A simple algorithm with well-tuned parameters is often better than an inadequately tuned complex algorithm, in many ways.

How do I know when to tune?

- * How does the model perform on the data?
- * Which of the models is the best?
- * Which of the learning algorithms gives the best model for the data?

*

* To be able to answer questions like these we need to have **measuring**

What to measure?

- * Number of positives, number of negatives, number of true positives, number of false positives, number of true negatives, number of false negatives
- Portion of positives, portion of negatives
- Class ratio
- * Accuracy, Error rate
- ROC curve, coverage curve,
- *
- * It all depends on how we define the performance for the answer to our question (experiment): *experimental objective*

How to measure?

- * And how to interpret?
- * It all depends what we are measuring...
- * Example: Testing the model accuracy
 - * Tool: Cross validation

Cross validation

- Sometimes called Rotation Estimation
- * Divide the data in n parts of equal size
- * Use n-1 parts for training and 1 for testing
- * Repeat n times so that each of the sets will be used for testing

In-database Machine Learning

- * Oracle Database Advanced Analytics (OAA) =
 - * Oracle DB + Oracle Data Mining (ODM) (+Data Miner GUI in Oracle SQL Developer) +
 - * Oracle R Enterprise (ORE)
- * Predictive Analytics with Oracle Data Mining (ODM)
- * Predictive Queries with Oracle Analytic Functions
- "Oracle Machine Learning" is a Zeppelin based SQL notebook that is available with ADWC

Oracle SQL Developer demo

Copyright © Miracle Finland Oy

Oracle SQL Developer, Data Miner

- * Oracle SQL Developer is a free tool from Oracle
- * Has an add-on called Data Miner
- Advanced analytics (Data Miner uses that) is a licensed product (in the EE database separately licensed, in the Cloud: Database Service either High Performace Package or Extreme Performance Package)
- * Oracle Data Miner GUI Installation Instructions

http://www.oracle.com/technetwork/database/options/advancedanalytics/odm/odmrinstallation-2080768.html

* Tutorial

http://www.oracle.com/webfolder/technetwork/tutorials/obe/db/12c/BigDataDM/ ODM12c-BDL4.html

Oracle Cloud Infrastructure

New Free Tier

oracle.com/gbtour

Always Free

Services you can use for unlimited time

30-Day Free Trial

Free credits you can use for more services

ADW demo

* Zeppelin based SQL notebook

Copyright © Miracle Finland Oy

And so many more languages to learn...

- * Python
- * C/C++
- * Java
- * JavaScript
- * Julia, Scala, Ruby, Octave, MATLAB, SAS

* https://medium.com/towards-data-science/what-is-the-best-programminglanguage-for-machine-learning-a745c156d6b7

Copyright © Miracle Finland Oy

What's next to learn?

- * There is still so much more about ML...
- Reinforcement learning
 - * the machine or software agent learns based on feedback from the environment
- * Preference learning
 - * inducing predictive preference models from empirical data
- * Multi-task learning
 - multiple learning tasks are solved at the same time, while exploiting commonalities and differences across tasks
- * Online machine learning
 - * data becomes available in a sequential order and is used to update our best predictor for future data at each step

What's next to learn?

- * Active learning
 - * A learning algorithm is able to interactively query the user (or some other information source) to obtain the desired outputs at new data points
- * Deep learning
 - * Images and anything that is in "several layers"
- * Adaptive Intelligence
 - * People and machines

The future and now!

- * AI and machine learning is here and it's the future
- * So many interesting areas to learn
- * Pick your area and START LEARNING!

* The time for Machine Learning is now because we technically able to use it and because of Big Data

Copyright © Miracle Finland Oy

* Several V's related to Big Data...

- * Volume
- * Velocity
- * Variety
- * Veracity
- * Viability
- Value
- * Variability
- * Visualization
- * ...

- * ML can be used "everywhere":
 - * Spam filters
 - * Log filters (and alarms)
 - * Data analytics
 - * Image recognition
 - * Speech recognition
 - * Medical diagnosis
 - * Robotics

- * Machine learning is all about approximation and educated guess
- * Unsupervised Learning vs supervised Learning
 - * Unsupervised Learning
 - * Clustering: hard or soft
 - * Supervised Learning
 - * Train, Predict
- * Predictive Models:
 - * classification, regression

- * Improving Models
 - * Feature engineering
 - * Hyperparameter tuning
- * What to measure? How to interpret the measures?
- * There is so much more to learn in ML...

THANK YOU!

QUESTIONS?

Email: heli@miracleoy.fi Twitter: @HeliFromFinland Blog: Helifromfinland.com

