
Speeding Up Executions
of User-Defined Functions

in SQL

Erik van Roon

HrOUG – Spring 2022

Who Am I?

: erik.van.roon@evrocs.nl
: www.evrocs.nl
: @evrocs_nl

Erik van Roon

>=Oracle5

Core team
MASH Program

1995 2009

Pro

https://sym42.org/

mailto:erik.van.roon@evrocs.nl
http://www.evrocs.nl/
https://sym42.org/

Mentor and Speaker Hub

Our goal is to connect speakers with mentors
to assist in preparing technical sessions and

improving presentation skills

Interested? Read more and get in touch

https://mashprogram.wordpress.com

3 membership tiers

Connect: @oracleaceFacebook.com/oracleacesoracle-ace_ww@oracle.com

500+ technical experts

helping peers globally

The Oracle ACE Program recognizes and
rewards community members for their
technical contributions in the Oracle community

Nominate
yourself or someone you know:

acenomination.oracle.com
For more details on Oracle ACE Program:
bit.ly/OracleACEProgram

http://acenomination.oracle.com/
bit.ly/OracleACEProgram
bit.ly/OracleACEProgram

The problem:

– SQL and PLSQL have their own engines

–Calling one from the other
introduces context switches

–Doing it often has
a noticeable performance impact

For SQL calls from PLSQL we have Bulk Operations

–Bulk Collect

– Forall

For PLSQL calls from SQL we didn’t have such tricks

Pre 12c we could:

1. Obviously: not do PLSQL if we don’t have to

2. Obviously: Make our PLSQL as efficient as possible

3. Declare the function Deterministic

4. Make use of the Function Result Cache

5. Make use of Scalar Subquery Caching

Option 3-5:

- Only faster when function is called often with the same parameters

- Executions that are not skipped will not be faster

Option 1 & 2:

- Always a good idea

--
select object_id "Object ID"
, digit_sum (object_id) "Sum Of Digits"
from user_objects
fetch first 4 rows only
/

PLSQL in Subquery Factoring (the With-Clause)

function digit_sum
(pi_integer in integer)
return integer
is

c_as_string constant varchar2(15) := to_char(pi_integer,'fm999999999999999');
l_result integer := 0;

begin
for i_pos in 1 .. length(c_as_string)
loop

l_result := l_result + to_number(substr(c_as_string, i_pos, 1));
end loop;
return (l_result);

end;

WITH_example_digit_sum.sql

Must be "/", not ";" in SQL*Plus and SQLcl

with

Result:

PLSQL in Subquery Factoring (the With-Clause)

If a function is declared right there in the query
the mistake is easily made to think it’s part of the query

However:

This plsql is NOT part of the read consistency
True for ANY PLSQL called from SQL

with
timestamp_query as
(select systimestamp
from dual

)
select level row_id
, (select systimestamp

from timestamp_query
) now

from dual
connect by level <= 10
;

WITH_example_read_consistency.sql

Get a timestamp from a query in the with clause

Get a timestamp from a Function in the with clause

with
function timestamp_data
return timestamp with time zone
is
l_result timestamp with time zone;

begin
select systimestamp
into l_result
from dual;
return l_result;

end;
select level row_id
, timestamp_data now
from dual
connect by level <= 10
/

WITH_example_read_consistency.sql

The PLSQL can also be defined in for example:

– The with clause of a subquery

– The with clause of the query in “insert into .. select from ..”

– The with clause of "using()" query of a merge statement

If it's NOT in the with clause of the top-level query
We need to warn the compiler that it will run into PLSQL

Use the hint:

/*+ WITH_PLSQL */

For example PLSQL defined in select of an insert:

insert
into my_table (col1, col2)
with
function do_something
return
is
begin

return (...);
end;

select source_data
, do_something
from other_table
/

will result in
ORA-32034: unsupported use of WITH clause

insert --+ with_plsql
into my_table (col1, col2)
with
function do_something
return
is
begin
return (...);

end;
select source_data
, do_something
from other_table
/

WITH_example_subquery.sql

will be successful

Syntax errors can lead to pretty useless error messages.
Often the message will just be:

ERROR at line ###: ORA-00905: missing keyword

where the line number is the line where the function begins

Advise:
develop the PLSQL in an
anonymous block until syntactically
correct, before putting it into the
with-clause

' Only' Functions
in the with clause?

Procedures can also be defined in the With-clause!
But can obviously only be executed from other plsql in with clause, not the query.

procedure proc1
(pio_1 in out number)
is
begin
pio_1 := power(pio_1 , 2);
dbms_output.put_line ('Squared number '||to_char(pio_1));

end proc1;

WITH_example_procedure.sql

with

--

function func1
(pi_1 in integer)
return number
is
l_value_1 number := pi_1;

begin

proc1 (pio_1 => l_value_1);
return (l_value_1);

end func1;

select level value

, func1 (pi_1 => level) calculated_value
from dual
connect by level <= 5
/

How about speeding things up even more…..

Use Function Result Cache
No: Error message

Declare the function to be Deterministic
No: Ignored and unreliable

Use Scalar Subquery Caching
No: Ignored

with
function f (p in integer)
return varchar2
result_cache
as
begin
return (p);

end;
--
select function_input
, f (function_input) function_output
from (select mod(level,2) function_input

from dual
connect by level <= 4

)
/

Unfortunately, Function Result Cache can not be used

WITH_example_function_result_cache.sql

The function *can* be declared deterministic
Without error messages

In 12.1
Deterministic is ignored

In 12.2 - 18
Sometimes it works
Sometimes it's ignored
Sometimes it gives wrong results due to bug

In 19
Deterministic is ignored
Sometimes it gives wrong results due to bug

So, Best bet: Don’t use deterministic with this

, however

Example of Deterministic that works in 12.2 – 18

with
function f (p in integer)

return integer
deterministic
as
begin
dbms_output.put_line ('Executed for value '||p);
return (p);

end;
--
select function_input
, f (function_input) function_output
from (select level function_input

from dual
connect by level <= 4
union all
select level function_input
from dual
connect by level <= 4

)
/

WITH_example_deterministic_ok_12.2.sql

Example of Deterministic that is ignored in 12.2 and above

WITH_example_deterministic_not_ok_12.2.sql

with
function f (p in integer)

return varchar2
deterministic
as
begin
dbms_output.put_line ('Executed for value '||p);
return (p);

end;
--
select function_input
, f (function_input) function_output
from (select level function_input

from dual
connect by level <= 4
union all
select level function_input
from dual
connect by level <= 4

)
/

Example of *wrong* deterministic results in 12.2 and above

with
function f (p in integer)
return integer
deterministic
as
begin
dbms_output.put_line
('Executed for value '||p);

return (p);
end;

--
select mod(level,2) function_input
, f (mod(level,2)) function_output
from dual
connect by level <= 4
/

WITH_example_deterministic_wrong_12.2.sql

Caused by bug: 27329690, WRONG RESULTS FROM INLINE DETERMINISTIC FUNCTION

Workaround: alter session set "_plsql_cache_enable" = false
But turns ALL deterministic OFF!

Those wrong results of previous query…..

Behavior apparently depends on the client being used:

SQL*Plus
Default settings

SQLcl
Default settings

LiveSQL (=From Apex)
https://livesql.oracle.com

https://livesql.oracle.com/

with
function f (p in integer)
return varchar2
as
begin
dbms_output.put_line ('Executed for value '||p);
return (p);

end;
select function_input
, (select f (function_input)

from dual
) function_output

from (select level function_input
from dual
connect by level <= 4
union all
select level function_input
from dual
connect by level <= 4
)

/

Scalar Subquery Caching *does* work in 12.1

Not in any later version

WITH_example_scalar_subquery_caching.sql

12,1

>= 12,2

merge /*+ with_plsql */
into ero_test_merge_bug tgt
using (with

function f (p in integer)
return integer
is
begin
return p * 10;

end;
--
select id
, f (id) value
from ero_test_merge_bug
where id = :my_id

) src
on (tgt.id = src.id)
when matched
then
update set tgt.value = src.value

when not matched
then
insert values (src.id, src.value)

/ WITH_example_merge_bug.sql

Bug 22654079, causing ora-600 in *a very specific case*
If:
1. You have a merge statement
2. AND plsql in the with-clause
3. AND the statement uses bind variables

THE DBA

PLSQL in the with clause is not supported by PLSQL (yet?)

Declaring a cursor with such a query leads, once again to

"ORA-00905: missing keyword"

Work-around: dynamic sql *does* work

But: ..

If already in plsql anyway,
why not declare the function separately with pragma udf?

Introduced in 12c

Pragma UDF

There's the possibility to add a
Pragma UDF

to any standalone or packaged function

Instructs the compiler that the function
will primarily be used within SQL

Documentation says

"...which might improve its performance"

create or replace function blabla
return ...
is

begin
....
return ...

end;
/

do we apply this?

pragma udf;

And we're done!!

with_plsql hint - not needed
syntax errors – 'usual' messages, instead of "missing keyword"
function result cache
Deterministic
behavior like in with clause
except: the wrong results query works correct
Scalar Subquery Caching
Use in merge statements with bind variables

Reuse of function

Advantages compared to with-clause functions

UDF_example_result_cache.sql

UDF_example_deterministic.sql

Need to create a database object (function/package)

You may not want to
(e.g. in a script in your toolkit for daily development/dba work)

You may not be allowed to
(e.g. in a script you run on different databases,
among which Production)

Performance gain (as we will soon see) is hard to predict

Disadvantages compared to with-clause functions

1. Setup some objects
₋ Table ero_test_plsql_input Contains test-data
₋ Table ero_test_plsql_tests Contains test definitions and statistical data for test runs (avg, std. dev.)
₋ Table ero_test_plsql_results Contains timing results for individual test executions
₋ Package ero_test_plsql_performance Runs the actual tests

2. Run the tests
₋ Prompts for a number of rows in the test-data table
₋ Runs all tests
₋ Writes results to tables

3. Query the ero_test_plsql_tests table for minimum, maximum and average runtime of each test,
including standard deviation and 95% confidence interval

4. Query the ero_test_plsql_results table for runtimes of individual executions
of each test (which have led to the averages etc.)

5. Drop all objects of this test

Performance Test Scripts

Benchmark\initial_setup.sql

Benchmark\run_tests.sql

Benchmark\cleanup.sql

PGA - Warning

Running the scripts for these performance tests you will notice that the tests where the primary function is of
type “function in with clause” cause a build up of pga used (no matter how simple the function is.
This pga memory is not released until the outermost plsql block is finished executing.
Even after the functions, view and procedure for a test are dropped, the pga stays in use. The next test adds
to that.
The amount of memory allocated depends on the number of rows in the table (=number of times the
function is executed) but it isn’t “a lot”.
In these testst it was about 10-15 MB per execution of a test.

Running these tests with 5 million rows in the table the procedure crashed because it ran out of pga.
I had to increase max pga until 12 GB to run the test.
But there are 66 tests with “function in with clause” each executed 11 times so 726 test runs each executing
5 million functions, totalling 3,6 billion function calls. Usually that is not an everyday scenario.

Reproducable in versions 12.1 - 19. Not tested yet in 21.

Performance Tests

Table

Procedure
Secondary
FunctionView

Primary
Function

Amount of rows for
this test:
5 million

Bulk Collects
from View

(This is what’s timed)

Selects from table

Executes Primary Function
for each row

Test Types

Plain SQL
Single Function

Nested Function
Pipelined Table Function

Regular
UDF

WITH

Function Complexity

This Returns
No-Op : Constant value
Simple : Result of case expression
Complex : Result of a loop

Regular
UDF

DBMS
(dbms_utility.get_hash_value)

Performance Test Execution

Parameter Datatype Return Datatype

NUMBER NUMBER

NUMBER VARCHAR2

NUMBER DATE

VARCHAR2 NUMBER

VARCHAR2 VARCHAR2

VARCHAR2 DATE

DATE NUMBER

DATE VARCHAR2

DATE DATE

BINARY_FLOAT BINARY_FLOAT

BINARY_DOUBLY BINARY_DOUBLY

₋ Each test is run 11 times
First run is ignored: warm-up run

₋ Average is calculated for the other 10

₋ Tests are executed for combinations of
datatypes for parameter and return value

₋ All tests have been executed using
plsql_optimize_level = 2

₋ A total of 211 distinct tests

₋ Baseline test is highlighted
Is test with "regular function"

₋ In results runtimes are a percentage
of the baseline test

Conclusions from these performance tests

These tests have NOT been run with YOUR real life functions / queries
These tests have NOT been run on YOUR hardware
These tests have NOT been run on YOUR version of YOUR database with YOUR patches

Tests of
Single Function

NUM
>>>

NUM

NUM
>>>

VCHR2

NUM
>>>

DATE

VCHR2
>>>

NUM

VCHR2
>>>

VCHR2

VCHR2
>>>

DATE

DATE
>>>

NUM

DATE
>>>

VCHR2

DATE
>>>

DATE

BIN FLT
>>>

BIN FLT

BIN DBL
>>>

BIN DBL

Regular 100 100 100 100 100 100 100 100 100 100 100

Plain SQL 20 21 13 17 14 13 16 16 13 16 15

UDF 31 32 96 101 102 97 101 103 100 23 23

WITH 34 35 37 27 30 34 26 29 36 26 25

0

20

40

60

80

100

120

Type = Single Function, Complexity = No-Op

Regular Plain SQL UDF WITH

• No surprise:
Plain SQL is always fastest

• Performance Gain depends on
datatype of parameter and
returnvalue especially for UDF
functions

• Executing a UDF function is faster
than a regular function
for certain datatype combinations

• When a UDF Function is faster than
a regular function it’s also slightly
faster than a function in the With
Clause

• Executing a function in the With
Clause is faster than a regular
function
regardless of the datatypes

NUM
>>>

NUM

NUM
>>>

VCHR2

NUM
>>>

DATE

VCHR2
>>>

NUM

VCHR2
>>>

VCHR2

VCHR2
>>>

DATE

DATE
>>>

NUM

DATE
>>>

VCHR2

DATE
>>>

DATE

BIN FLT
>>>

BIN FLT

BIN DBL
>>>

BIN DBL

Regular 100 100 100 100 100 100 100 100 100 100 100

UDF 32 22 98 105 98 98 108 100 100 24 24

WITH 35 34 38 27 21 34 26 20 36 26 26

0

20

40

60

80

100

120

Type = Single Function, Complexity = Simple

Regular UDF WITH

• The numbers are slightly different
than for a No-Op function

But the conclusions are the same

NUM
>>>

NUM

NUM
>>>

VCHR2

NUM
>>>

DATE

VCHR2
>>>

NUM

VCHR2
>>>

VCHR2

VCHR2
>>>

DATE

DATE
>>>

NUM

DATE
>>>

VCHR2

DATE
>>>

DATE

BIN FLT
>>>

BIN FLT

BIN DBL
>>>

BIN DBL

Regular 100 100 100 100 100 100 100 100 100 100 100

UDF 34 40 102 99 102 99 94 99 101 24 25

WITH 36 43 44 28 38 43 28 37 45 27 26

0

20

40

60

80

100

120

Type = Single Function, Complexity = Complex

Regular UDF WITH

• The numbers are slightly different
than for a No-Op function

But the conclusions are the same

Tests of
Nested Functions

Complexity = “Complex”
for all these tests

NUM
>>>

NUM

NUM
>>>

VCHR2

NUM
>>>

DATE

VCHR2
>>>

NUM

VCHR2
>>>

VCHR2

VCHR2
>>>

DATE

DATE
>>>

NUM

DATE
>>>

VCHR2

DATE
>>>

DATE

BIN FLT
>>>

BIN FLT

BIN DBL
>>>

BIN DBL

Regular >
Regular

100 100 100 100 100 100 100 100 100 100 100

UDF >
Regular

39 46 98 99 104 94 98 99 101 28 30

WITH >
Regular

32 39 40 26 33 36 25 32 40 24 24

0

20

40

60

80

100

120

Type = Nested Function, Second Function = Regular

Regular >
Regular

UDF >
Regular

WITH >
Regular

• When a regular function is executed
by a UDF function or a function in
the WITH clause, we see similar
results to executing a single UDF or
WITH clause function.

NUM
>>>

NUM

NUM
>>>

VCHR2

NUM
>>>

DATE

VCHR2
>>>

NUM

VCHR2
>>>

VCHR2

VCHR2
>>>

DATE

DATE
>>>

NUM

DATE
>>>

VCHR2

DATE
>>>

DATE

BIN FLT
>>>

BIN FLT

BIN DBL
>>>

BIN DBL

Regular >
Regular

100 100 100 100 100 100 100 100 100 100 100

Regular >
UDF

100 104 101 102 103 93 97 100 102 97 100

UDF >
UDF

39 46 100 103 98 94 98 99 99 28 30

WITH >
UDF

32 41 44 27 34 37 25 35 40 24 24

0

20

40

60

80

100

120

Type = Nested Function, Second Function = UDF

Regular >
Regular

Regular >
UDF

UDF >
UDF

WITH >
UDF

• If the primary function is a regular
one, having it execute a UDF
function may slow it down a bit

• When the primary function is a UDF
or WITH clause function we see
almost the exact same performance
for a secondary UDF function as for
a secondary regular function.

• In a chain of functions that call each
other the optimization by the
compiler depends solely on the type
(regular, UDF, with clause) of the
function that is executed by the
query itself

NUM
>>>

NUM

NUM
>>>

VCHR2

NUM
>>>

DATE

VCHR2
>>>

NUM

VCHR2
>>>

VCHR2

VCHR2
>>>

DATE

DATE
>>>

NUM

DATE
>>>

VCHR2

DATE
>>>

DATE

BIN FLT
>>>

BIN FLT

BIN DBL
>>>

BIN DBL

Regular >
DBMS

100 100 100 100 100 100 100 100 100 100 100

UDF >
DBMS

39 42 101 104 101 100 100 100 100 52 54

WITH >
DBMS

40 48 45 36 38 43 42 44 50 56 57

0

20

40

60

80

100

120

Type = Nested Function, Second Function = DBMS

Regular >
DBMS

UDF >
DBMS

WITH >
DBMS

• Even when a function from one of
Oracle’s supplied packages is
executed from UDF or WITH clause
function, we see almost the exact
same performance gains as when
the executed function is one of our
own.

• We seem to be able to get a
performance gain for functions we
don’t control by having a wrapper
function with pragma UDF or in the
with clause.

Tests of
Pipelined Table Functions
Complexity = “Complex”

for these tests

NUM >>> NUM

Regular PTF 100

UDF PTF 100

0

20

40

60

80

100

120

Type = Pipelined Table Function

Regular PTF UDF PTF

• No performance gain at all by using
pragma UDF in a pipelined table
function

• Comment by Bryn Llewellyn:
That is correct, because pipelined
table functions have always been
designed to be called from SQL and
have hence always been optimized
for use from SQL.

General Conclusions

• Functions in the WITH clause
Not everything is possible, but it always (in these tests) gives a performance benefit.

• Pragma UDF
‘Everything’ is possible, but it doesn’t always lead to better performance.

• Functions calling other functions
The type of the function that is called by the query determines the performance gain.

• Wrap regular functions
The above seems to justify simply creating regular function in a package.
So it can be reused everywhere, both in SQL and in PLSQL.
If it needs to be used within SQL:
Wrap it (execute it and return its result) in a function in the WITH clause.

If however the query is in a PLSQL block,
This can currently only be achieved with dynamic SQL.

“Stupid questions do exist.
But it takes a lot more time and energy to correct a stupid mistake than it
takes to answer a stupid question, so please ask your stupid questions.”

a wise teacher who taught me more than just physics

